Serveur d'exploration sur les mitochondries dans l'oxydoréduction chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Redox-Regulation of Photorespiration through Mitochondrial Thioredoxin o1.

Identifieur interne : 000089 ( Main/Exploration ); précédent : 000088; suivant : 000090

Redox-Regulation of Photorespiration through Mitochondrial Thioredoxin o1.

Auteurs : Ole Reinholdt [Allemagne] ; Saskia Schwab [Allemagne] ; Youjun Zhang [Allemagne, Bulgarie] ; Jean-Philippe Reichheld [France] ; Alisdair R. Fernie [Allemagne, Bulgarie] ; Martin Hagemann [Allemagne] ; Stefan Timm [Allemagne]

Source :

RBID : pubmed:31413204

Descripteurs français

English descriptors

Abstract

Photorespiration sustains photosynthesis in the presence of oxygen due to rapid metabolization of 2-phosphoglycolate, the major side-product of the oxygenase activity of Rubisco that also directly impedes carbon assimilation and allocation. Despite the fact that both the biochemical reactions and the underlying genetics are well characterized, information concerning the regulatory mechanisms that adjust photorespiratory flux is rare. Here, we studied the impact of mitochondrial-localized thioredoxin o1 (TRXo1) on photorespiratory metabolism. The characterization of an Arabidopsis (Arabidopsis thaliana) transfer DNA insertional line (trxo1-1) revealed an increase in the stoichiometry of photorespiratory CO2 release and impaired Gly-to-Ser turnover after a shift from high-to-low CO2 without changes in Gly decarboxylase (GDC) gene or protein expression. These effects were distinctly pronounced in a double mutant, where the TRXo1 mutation was combined with strongly reduced GDC T-protein expression. The double mutant (TxGT) showed reduced growth in air but not in high CO2, decreased photosynthesis, and up to 54-fold more Gly alongside several redox-stress-related metabolites. Given that GDC proteins are potential targets for redox-regulation, we also examined the in vitro properties of recombinant GDC l-proteins (lipoamide dehydrogenase) from plants and the cyanobacterium Synechocystis species strain PCC6803 and observed a redox-dependent inhibition by either artificial reducing agents or TRXo1 itself. Collectively, our results demonstrate that TRXo1 potentially adjusts photorespiration via redox-regulation of GDC in response to environmental changes.

DOI: 10.1104/pp.19.00559
PubMed: 31413204
PubMed Central: PMC6776843


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Redox-Regulation of Photorespiration through Mitochondrial Thioredoxin o1.</title>
<author>
<name sortKey="Reinholdt, Ole" sort="Reinholdt, Ole" uniqKey="Reinholdt O" first="Ole" last="Reinholdt">Ole Reinholdt</name>
<affiliation wicri:level="1">
<nlm:affiliation>University of Rostock, Plant Physiology Department, Albert-Einstein-Straße 3, D-18059 Rostock, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>University of Rostock, Plant Physiology Department, Albert-Einstein-Straße 3, D-18059 Rostock</wicri:regionArea>
<wicri:noRegion>18059 Rostock</wicri:noRegion>
<wicri:noRegion>18059 Rostock</wicri:noRegion>
<wicri:noRegion>D-18059 Rostock</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schwab, Saskia" sort="Schwab, Saskia" uniqKey="Schwab S" first="Saskia" last="Schwab">Saskia Schwab</name>
<affiliation wicri:level="1">
<nlm:affiliation>University of Rostock, Plant Physiology Department, Albert-Einstein-Straße 3, D-18059 Rostock, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>University of Rostock, Plant Physiology Department, Albert-Einstein-Straße 3, D-18059 Rostock</wicri:regionArea>
<wicri:noRegion>18059 Rostock</wicri:noRegion>
<wicri:noRegion>18059 Rostock</wicri:noRegion>
<wicri:noRegion>D-18059 Rostock</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Youjun" sort="Zhang, Youjun" uniqKey="Zhang Y" first="Youjun" last="Zhang">Youjun Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Golm, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Golm</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Brandebourg</region>
<settlement type="city">Potsdam</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria.</nlm:affiliation>
<country xml:lang="fr">Bulgarie</country>
<wicri:regionArea>Center of Plant System Biology and Biotechnology, 4000 Plovdiv</wicri:regionArea>
<wicri:noRegion>4000 Plovdiv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reichheld, Jean Philippe" sort="Reichheld, Jean Philippe" uniqKey="Reichheld J" first="Jean-Philippe" last="Reichheld">Jean-Philippe Reichheld</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Perpignan</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Perpignan</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fernie, Alisdair R" sort="Fernie, Alisdair R" uniqKey="Fernie A" first="Alisdair R" last="Fernie">Alisdair R. Fernie</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Golm, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Golm</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Brandebourg</region>
<settlement type="city">Potsdam</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria.</nlm:affiliation>
<country xml:lang="fr">Bulgarie</country>
<wicri:regionArea>Center of Plant System Biology and Biotechnology, 4000 Plovdiv</wicri:regionArea>
<wicri:noRegion>4000 Plovdiv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hagemann, Martin" sort="Hagemann, Martin" uniqKey="Hagemann M" first="Martin" last="Hagemann">Martin Hagemann</name>
<affiliation wicri:level="1">
<nlm:affiliation>University of Rostock, Plant Physiology Department, Albert-Einstein-Straße 3, D-18059 Rostock, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>University of Rostock, Plant Physiology Department, Albert-Einstein-Straße 3, D-18059 Rostock</wicri:regionArea>
<wicri:noRegion>18059 Rostock</wicri:noRegion>
<wicri:noRegion>18059 Rostock</wicri:noRegion>
<wicri:noRegion>D-18059 Rostock</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Timm, Stefan" sort="Timm, Stefan" uniqKey="Timm S" first="Stefan" last="Timm">Stefan Timm</name>
<affiliation wicri:level="1">
<nlm:affiliation>University of Rostock, Plant Physiology Department, Albert-Einstein-Straße 3, D-18059 Rostock, Germany stefan.timm@uni-rostock.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>University of Rostock, Plant Physiology Department, Albert-Einstein-Straße 3, D-18059 Rostock</wicri:regionArea>
<wicri:noRegion>18059 Rostock</wicri:noRegion>
<wicri:noRegion>18059 Rostock</wicri:noRegion>
<wicri:noRegion>D-18059 Rostock</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31413204</idno>
<idno type="pmid">31413204</idno>
<idno type="doi">10.1104/pp.19.00559</idno>
<idno type="pmc">PMC6776843</idno>
<idno type="wicri:Area/Main/Corpus">000085</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000085</idno>
<idno type="wicri:Area/Main/Curation">000085</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000085</idno>
<idno type="wicri:Area/Main/Exploration">000085</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Redox-Regulation of Photorespiration through Mitochondrial Thioredoxin o1.</title>
<author>
<name sortKey="Reinholdt, Ole" sort="Reinholdt, Ole" uniqKey="Reinholdt O" first="Ole" last="Reinholdt">Ole Reinholdt</name>
<affiliation wicri:level="1">
<nlm:affiliation>University of Rostock, Plant Physiology Department, Albert-Einstein-Straße 3, D-18059 Rostock, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>University of Rostock, Plant Physiology Department, Albert-Einstein-Straße 3, D-18059 Rostock</wicri:regionArea>
<wicri:noRegion>18059 Rostock</wicri:noRegion>
<wicri:noRegion>18059 Rostock</wicri:noRegion>
<wicri:noRegion>D-18059 Rostock</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schwab, Saskia" sort="Schwab, Saskia" uniqKey="Schwab S" first="Saskia" last="Schwab">Saskia Schwab</name>
<affiliation wicri:level="1">
<nlm:affiliation>University of Rostock, Plant Physiology Department, Albert-Einstein-Straße 3, D-18059 Rostock, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>University of Rostock, Plant Physiology Department, Albert-Einstein-Straße 3, D-18059 Rostock</wicri:regionArea>
<wicri:noRegion>18059 Rostock</wicri:noRegion>
<wicri:noRegion>18059 Rostock</wicri:noRegion>
<wicri:noRegion>D-18059 Rostock</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Youjun" sort="Zhang, Youjun" uniqKey="Zhang Y" first="Youjun" last="Zhang">Youjun Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Golm, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Golm</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Brandebourg</region>
<settlement type="city">Potsdam</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria.</nlm:affiliation>
<country xml:lang="fr">Bulgarie</country>
<wicri:regionArea>Center of Plant System Biology and Biotechnology, 4000 Plovdiv</wicri:regionArea>
<wicri:noRegion>4000 Plovdiv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reichheld, Jean Philippe" sort="Reichheld, Jean Philippe" uniqKey="Reichheld J" first="Jean-Philippe" last="Reichheld">Jean-Philippe Reichheld</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Perpignan</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Perpignan</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fernie, Alisdair R" sort="Fernie, Alisdair R" uniqKey="Fernie A" first="Alisdair R" last="Fernie">Alisdair R. Fernie</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Golm, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Golm</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Brandebourg</region>
<settlement type="city">Potsdam</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria.</nlm:affiliation>
<country xml:lang="fr">Bulgarie</country>
<wicri:regionArea>Center of Plant System Biology and Biotechnology, 4000 Plovdiv</wicri:regionArea>
<wicri:noRegion>4000 Plovdiv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hagemann, Martin" sort="Hagemann, Martin" uniqKey="Hagemann M" first="Martin" last="Hagemann">Martin Hagemann</name>
<affiliation wicri:level="1">
<nlm:affiliation>University of Rostock, Plant Physiology Department, Albert-Einstein-Straße 3, D-18059 Rostock, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>University of Rostock, Plant Physiology Department, Albert-Einstein-Straße 3, D-18059 Rostock</wicri:regionArea>
<wicri:noRegion>18059 Rostock</wicri:noRegion>
<wicri:noRegion>18059 Rostock</wicri:noRegion>
<wicri:noRegion>D-18059 Rostock</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Timm, Stefan" sort="Timm, Stefan" uniqKey="Timm S" first="Stefan" last="Timm">Stefan Timm</name>
<affiliation wicri:level="1">
<nlm:affiliation>University of Rostock, Plant Physiology Department, Albert-Einstein-Straße 3, D-18059 Rostock, Germany stefan.timm@uni-rostock.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>University of Rostock, Plant Physiology Department, Albert-Einstein-Straße 3, D-18059 Rostock</wicri:regionArea>
<wicri:noRegion>18059 Rostock</wicri:noRegion>
<wicri:noRegion>18059 Rostock</wicri:noRegion>
<wicri:noRegion>D-18059 Rostock</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (MeSH)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (metabolism)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Cell Respiration (MeSH)</term>
<term>Glycine Dehydrogenase (Decarboxylating) (genetics)</term>
<term>Glycine Dehydrogenase (Decarboxylating) (metabolism)</term>
<term>Mitochondria (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Peas (MeSH)</term>
<term>Photosynthesis (MeSH)</term>
<term>Synechocystis (MeSH)</term>
<term>Thioredoxins (genetics)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation physiologique (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Glycine dehydrogenase (decarboxylating) (génétique)</term>
<term>Glycine dehydrogenase (decarboxylating) (métabolisme)</term>
<term>Mitochondries (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Photosynthèse (MeSH)</term>
<term>Pois (MeSH)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Respiration cellulaire (MeSH)</term>
<term>Synechocystis (MeSH)</term>
<term>Thiorédoxines (génétique)</term>
<term>Thiorédoxines (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Glycine Dehydrogenase (Decarboxylating)</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Glycine dehydrogenase (decarboxylating)</term>
<term>Protéines d'Arabidopsis</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Arabidopsis Proteins</term>
<term>Glycine Dehydrogenase (Decarboxylating)</term>
<term>Mitochondria</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arabidopsis</term>
<term>Glycine dehydrogenase (decarboxylating)</term>
<term>Mitochondries</term>
<term>Protéines d'Arabidopsis</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Cell Respiration</term>
<term>Oxidation-Reduction</term>
<term>Peas</term>
<term>Photosynthesis</term>
<term>Synechocystis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Oxydoréduction</term>
<term>Photosynthèse</term>
<term>Pois</term>
<term>Respiration cellulaire</term>
<term>Synechocystis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Photorespiration sustains photosynthesis in the presence of oxygen due to rapid metabolization of 2-phosphoglycolate, the major side-product of the oxygenase activity of Rubisco that also directly impedes carbon assimilation and allocation. Despite the fact that both the biochemical reactions and the underlying genetics are well characterized, information concerning the regulatory mechanisms that adjust photorespiratory flux is rare. Here, we studied the impact of mitochondrial-localized thioredoxin o1 (TRXo1) on photorespiratory metabolism. The characterization of an Arabidopsis (
<i>Arabidopsis thaliana</i>
) transfer DNA insertional line (
<i>trxo1-1</i>
) revealed an increase in the stoichiometry of photorespiratory CO
<sub>2</sub>
release and impaired Gly-to-Ser turnover after a shift from high-to-low CO
<sub>2</sub>
without changes in Gly decarboxylase (GDC) gene or protein expression. These effects were distinctly pronounced in a double mutant, where the
<i>TRXo1</i>
mutation was combined with strongly reduced GDC T-protein expression. The double mutant (
<i>TxGT</i>
) showed reduced growth in air but not in high CO
<sub>2</sub>
, decreased photosynthesis, and up to 54-fold more Gly alongside several redox-stress-related metabolites. Given that GDC proteins are potential targets for redox-regulation, we also examined the in vitro properties of recombinant GDC l-proteins (lipoamide dehydrogenase) from plants and the cyanobacterium
<i>Synechocystis species</i>
strain PCC6803 and observed a redox-dependent inhibition by either artificial reducing agents or TRXo1 itself. Collectively, our results demonstrate that TRXo1 potentially adjusts photorespiration via redox-regulation of GDC in response to environmental changes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31413204</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>09</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>181</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2019</Year>
<Month>10</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Redox-Regulation of Photorespiration through Mitochondrial Thioredoxin o1.</ArticleTitle>
<Pagination>
<MedlinePgn>442-457</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.19.00559</ELocationID>
<Abstract>
<AbstractText>Photorespiration sustains photosynthesis in the presence of oxygen due to rapid metabolization of 2-phosphoglycolate, the major side-product of the oxygenase activity of Rubisco that also directly impedes carbon assimilation and allocation. Despite the fact that both the biochemical reactions and the underlying genetics are well characterized, information concerning the regulatory mechanisms that adjust photorespiratory flux is rare. Here, we studied the impact of mitochondrial-localized thioredoxin o1 (TRXo1) on photorespiratory metabolism. The characterization of an Arabidopsis (
<i>Arabidopsis thaliana</i>
) transfer DNA insertional line (
<i>trxo1-1</i>
) revealed an increase in the stoichiometry of photorespiratory CO
<sub>2</sub>
release and impaired Gly-to-Ser turnover after a shift from high-to-low CO
<sub>2</sub>
without changes in Gly decarboxylase (GDC) gene or protein expression. These effects were distinctly pronounced in a double mutant, where the
<i>TRXo1</i>
mutation was combined with strongly reduced GDC T-protein expression. The double mutant (
<i>TxGT</i>
) showed reduced growth in air but not in high CO
<sub>2</sub>
, decreased photosynthesis, and up to 54-fold more Gly alongside several redox-stress-related metabolites. Given that GDC proteins are potential targets for redox-regulation, we also examined the in vitro properties of recombinant GDC l-proteins (lipoamide dehydrogenase) from plants and the cyanobacterium
<i>Synechocystis species</i>
strain PCC6803 and observed a redox-dependent inhibition by either artificial reducing agents or TRXo1 itself. Collectively, our results demonstrate that TRXo1 potentially adjusts photorespiration via redox-regulation of GDC in response to environmental changes.</AbstractText>
<CopyrightInformation>© 2019 American Society of Plant Biologists. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Reinholdt</LastName>
<ForeName>Ole</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>University of Rostock, Plant Physiology Department, Albert-Einstein-Straße 3, D-18059 Rostock, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schwab</LastName>
<ForeName>Saskia</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>University of Rostock, Plant Physiology Department, Albert-Einstein-Straße 3, D-18059 Rostock, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Youjun</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">0000-0003-1052-0256</Identifier>
<AffiliationInfo>
<Affiliation>Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Golm, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reichheld</LastName>
<ForeName>Jean-Philippe</ForeName>
<Initials>JP</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fernie</LastName>
<ForeName>Alisdair R</ForeName>
<Initials>AR</Initials>
<Identifier Source="ORCID">0000-0001-9000-335X</Identifier>
<AffiliationInfo>
<Affiliation>Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Golm, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hagemann</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0002-2059-2061</Identifier>
<AffiliationInfo>
<Affiliation>University of Rostock, Plant Physiology Department, Albert-Einstein-Straße 3, D-18059 Rostock, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Timm</LastName>
<ForeName>Stefan</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0003-3105-6296</Identifier>
<AffiliationInfo>
<Affiliation>University of Rostock, Plant Physiology Department, Albert-Einstein-Straße 3, D-18059 Rostock, Germany stefan.timm@uni-rostock.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>08</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000624492">Trxo1 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.4.4.2</RegistryNumber>
<NameOfSubstance UI="D050841">Glycine Dehydrogenase (Decarboxylating)</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019069" MajorTopicYN="N">Cell Respiration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050841" MajorTopicYN="N">Glycine Dehydrogenase (Decarboxylating)</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018532" MajorTopicYN="N">Peas</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="Y">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046939" MajorTopicYN="N">Synechocystis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>05</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>07</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31413204</ArticleId>
<ArticleId IdType="pii">pp.19.00559</ArticleId>
<ArticleId IdType="doi">10.1104/pp.19.00559</ArticleId>
<ArticleId IdType="pmc">PMC6776843</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2011 Feb;155(2):694-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2019 Jan 7;70(2):575-587</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30357386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2017 Jan 9;10(1):47-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27702693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:455-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19575589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):14144-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11717467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2007 Apr 1;363(1):58-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17288982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 May;267(10):2890-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10806386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jan;125(1):20-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11154287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):17199-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18957552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Jul;13(7):1499-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11449047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Dec 6;288(49):35333-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24121504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1971 Nov 5;45(3):716-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4331471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2007 Jan;120(1):157-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17186119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2013 Jul;15(4):694-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23506267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2018 Dec;60(12):1217-1230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30126060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2017 Aug 7;10(8):1107-1125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28739495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):3185-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23382251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 May;67(10):3015-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27053720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 May;67(10):2941-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26969741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e42809</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22912743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2013 Aug 14;113(8):6621-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23767781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Mar;152(3):1514-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20089767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18805949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Sep;59(5):826-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19453453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2000 Oct 29;355(1402):1517-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11128005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Jun;15(3):269-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22284850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Aug 1;301(5633):653-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12893945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2015 Jul 7;87(13):6896-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26010726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2013 Jul;15(4):748-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23231538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2016 Apr 29;67:107-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26865340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2018 Jan;247(1):41-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28866761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2016 Dec;92(6):701-715</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27614468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2019 Jun;180(2):783-792</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30886114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2017 Jul;15(7):805-816</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27936496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1990 May;93(1):231-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 May;162(1):379-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23471132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 May;50(3):381-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17376163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat New Biol. 1971 Mar 31;230(13):159-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5279476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 May;67(10):3003-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27029352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Mar;73(5):836-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23181524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2013 Jul;15(4):754-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23121076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2012 Oct 19;586(20):3692-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22982108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 1988 Apr;16(1-2):155-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24430997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1998 Sep 15;334 ( Pt 3):571-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9729464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Jul;25(7):2647-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23860249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2017 Oct;29(10):2537-2551</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28947491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2011 Sep;108(2-3):91-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21567290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1976 Sep 15;68(1):55-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">134908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Dec;112(4):1523-1530</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2017 Mar;22(3):249-262</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28139457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2019 Jan 4;363(6422):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30606819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2017 Apr;40(4):553-569</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26791824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Jun;15(6):330-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20403720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 May;67(10):3165-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26994474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2020 Jan;43(1):188-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31378951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Bioeng Biotechnol. 2015 Jul 29;3:106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26284240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1986 Aug 1;248(2):626-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3090936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2642-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14983062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Jan 17;579(2):337-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15642341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):E1392-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25646482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1971 Apr 14;235(1):237-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5089710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1990 Oct;94(2):833-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2013 Jul;15(4):737-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23171236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2015 Sep;83(6):1005-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26216646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1988 Oct 1;255(1):169-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3143355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Jul;27(7):1968-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26116608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2019 Jan;17(1):141-151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29851213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 May;67(10):2923-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26969745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2001 Apr;6(4):167-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11286922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 May;67(10):2977-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26951371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 Dec;1763(12):1496-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17046077</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Bulgarie</li>
<li>France</li>
</country>
<region>
<li>Brandebourg</li>
<li>Languedoc-Roussillon</li>
<li>Occitanie (région administrative)</li>
</region>
<settlement>
<li>Perpignan</li>
<li>Potsdam</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<noRegion>
<name sortKey="Reinholdt, Ole" sort="Reinholdt, Ole" uniqKey="Reinholdt O" first="Ole" last="Reinholdt">Ole Reinholdt</name>
</noRegion>
<name sortKey="Fernie, Alisdair R" sort="Fernie, Alisdair R" uniqKey="Fernie A" first="Alisdair R" last="Fernie">Alisdair R. Fernie</name>
<name sortKey="Hagemann, Martin" sort="Hagemann, Martin" uniqKey="Hagemann M" first="Martin" last="Hagemann">Martin Hagemann</name>
<name sortKey="Schwab, Saskia" sort="Schwab, Saskia" uniqKey="Schwab S" first="Saskia" last="Schwab">Saskia Schwab</name>
<name sortKey="Timm, Stefan" sort="Timm, Stefan" uniqKey="Timm S" first="Stefan" last="Timm">Stefan Timm</name>
<name sortKey="Zhang, Youjun" sort="Zhang, Youjun" uniqKey="Zhang Y" first="Youjun" last="Zhang">Youjun Zhang</name>
</country>
<country name="Bulgarie">
<noRegion>
<name sortKey="Zhang, Youjun" sort="Zhang, Youjun" uniqKey="Zhang Y" first="Youjun" last="Zhang">Youjun Zhang</name>
</noRegion>
<name sortKey="Fernie, Alisdair R" sort="Fernie, Alisdair R" uniqKey="Fernie A" first="Alisdair R" last="Fernie">Alisdair R. Fernie</name>
</country>
<country name="France">
<region name="Occitanie (région administrative)">
<name sortKey="Reichheld, Jean Philippe" sort="Reichheld, Jean Philippe" uniqKey="Reichheld J" first="Jean-Philippe" last="Reichheld">Jean-Philippe Reichheld</name>
</region>
<name sortKey="Reichheld, Jean Philippe" sort="Reichheld, Jean Philippe" uniqKey="Reichheld J" first="Jean-Philippe" last="Reichheld">Jean-Philippe Reichheld</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MitoPlantRedoxV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000089 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000089 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MitoPlantRedoxV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31413204
   |texte=   Redox-Regulation of Photorespiration through Mitochondrial Thioredoxin o1.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31413204" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MitoPlantRedoxV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:18:52 2020. Site generation: Sat Nov 21 12:19:22 2020